On the strong law of large numbers for weighted sums of φ-mixing random variables

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Strong Law of Large Numbers for Weighted Sums of Φ –mixing Random Variables

Let {Xn,n 1} be a sequence of φ -mixing random variables with non-identical distribution and {ani;1 i n,n 1} be an array of real constants. In this paper, we study the strong law of large numbers for the maximal weighted sums of φ -mixing random variables. The results obtained generalize and improve the previous known result of Bai and Cheng (Z.D. Bai and P.E. Cheng, 2000. Marcinkiewicz strong ...

متن کامل

On the Convergence Rate of the Law of Large Numbers for Sums of Dependent Random Variables

In this paper, we generalize some results of Chandra and Goswami [4] for pairwise negatively dependent random variables (henceforth r.v.’s). Furthermore, we give Baum and Katz’s [1] type results on estimate for the rate of convergence in these laws.

متن کامل

Strong Laws for Weighted Sums of Negative Dependent Random Variables

In this paper, we discuss strong laws for weighted sums of pairwise negatively dependent random variables. The results on i.i.d case of Soo Hak Sung [9] are generalized and extended.

متن کامل

On the Strong Law of Large Numbers for Weighted Sums of Negatively Superadditive Dependent Random Variables

Let {Xn, n ≥ 1} be a sequence of negatively superadditive dependent random variables. In the paper, we study the strong law of large numbers for general weighted sums 1 g(n) ∑n i=1 Xi h(i) of negatively superadditive dependent random variables with non-identical distribution. Some sufficient conditions for the strong law of large numbers are provided. As applications, the Kolmogorov strong law ...

متن کامل

MARCINKIEWICZ-TYPE STRONG LAW OF LARGE NUMBERS FOR DOUBLE ARRAYS OF NEGATIVELY DEPENDENT RANDOM VARIABLES

In the following work we present a proof for the strong law of large numbers for pairwise negatively dependent random variables which relaxes the usual assumption of pairwise independence. Let be a double sequence of pairwise negatively dependent random variables. If for all non-negative real numbers t and , for 1 < p < 2, then we prove that (1). In addition, it also converges to 0 in ....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Inequalities

سال: 2014

ISSN: 1846-579X

DOI: 10.7153/jmi-08-34